A dynamic system of brain networks revealed by fast transient EEG fluctuations and their fMRI correlates.

Affiliation

STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering (ESAT), KU, Leuven, Belgium; imec, Leuven, Belgium. Electronic address: [Email]

Abstract

Resting state brain activity has become a significant area of investigation in human neuroimaging. An important approach for understanding the dynamics of neuronal activity in the resting state is to use complementary imaging modalities. Electrophysiological recordings can access fast temporal dynamics, while functional magnetic resonance imaging (fMRI) studies reveal detailed spatial patterns. However, the relationship between these two measures is not fully established. In this study, we used simultaneously recorded electroencephalography (EEG) and fMRI, along with Hidden Markov Modelling, to investigate how network dynamics at fast sub-second time-scales, accessible with EEG, link to the slower time-scales and higher spatial detail of fMRI. We found that the fMRI correlates of fast transient EEG dynamic networks show highly reproducible spatial patterns, and that their spatial organization exhibits strong similarity with traditional fMRI resting state networks maps. This further demonstrates the potential of electrophysiology as a tool for understanding the fast network dynamics that underlie fMRI resting state networks.

OUR Recent Articles