A highly sensitive sensor based on ordered mesoporous ZnFe2O4 for electrochemical detection of dopamine.

Affiliation

Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China. Electronic address: [Email]

Abstract

Accurate and sensitive detection of dopamine (DA) is fundamental to monitor and diagnose certain neurological diseases. Herein, highly ordered mesoporous ZnFe2O4 (OM-ZnFe2O4) is prepared via a facile nanocasting method and shows the highly sensitive in the electrochemical detection of DA. The optimized OM-ZnFe2O4-40 shows the most excellent activity for DA oxidation in a wide linear range from 2 to 600 nM with a quick response time of 5 s, high sensitivity of 0.094 nA nM-1 and a lower detection limit of 0.4 nM (S/N = 3). The electrode modified with OM-ZnFe2O4 is further successfully used to monitor the increase of DA concentration induced by K+-stimulation of living PC12 cells in a neurological environment. This work offers a simple and powerful strategy for designing electrodes for detecting DA in biological systems.

Keywords

Biosensor,Dopamine,Electrochemical detection,ZnFe(2)O(4),

OUR Recent Articles