A novel lab-on-chip platform enabling axotomy and neuromodulation in a multi-nodal network.


Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), PO Box 8905 MTFS, NO-7491, Trondheim, Norway. Electronic address: [Email]


Lab-on-chip platforms, such as microfluidic chips and micro-electrode arrays (MEAs) are powerful tools that allow us to manipulate and study neurons in vitro. Microfluidic chips provide a controlled extracellular environment that structures neural networks and facilitates isolation and manipulation at a sub-cellular level. Furthermore, MEAs enable measurement of extracellular electrophysiological activity from single neurons to entire networks. Here, we demonstrate the design, fabrication and application of a 3-nodal microfluidic chip integrated with MEAs as a versatile study platform for neurobiology and pathophysiology. In this work, we evaluate the use of the microfluidic chip to structure a neural network into three separate nodes, interconnected through tunnels that isolate and guide axons into a channel, thus facilitating synaptic contacts between neurons originating from opposite nodes. Furthermore, we demonstrate the utility of the MEA for monitoring developing activity and intra-/inter nodal connectivity of the structured neural network. Finally, we demonstrate the versatility of the platform in two separate experiments. First, we demonstrate the ability to measure intra- and inter-nodal dynamic responses to a fluidically isolated chemical stimulation. Then, we demonstrate the feature of the microfluidic chip enabling the disruption of functional connectivity between nodes and examination of the immediate activity response of the neural network. The platform enables in vitro modelling of neural networks to study their functional connectomes in the context of neurodegenerative disease and CNS trauma, including spinal cord injury.


Axotomy,Functional connectivity,Micro-electrode array,Microfluidic chip,Plasticity,Synaptic connectivity,

OUR Recent Articles