A novel two-photon fluorescent probe with long-wavelength emission for monitoring HClO in living cells and tissues.

Affiliation

School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China. Electronic address: [Email]

Abstract

Hypochlorous acid (HClO), one of the most important reactive oxygen species (ROS), is a potent antimicrobial agent for the immune system against invasive bacteria and a wide range of pathogens. Therefore, it is critical to develop sensitive and selective methods for visualization of HClO in biological samples. In this work, a two-photon fluorescent probe HN2-TP) with long-wavelength emission (far-red: 630 nm) based on rhodamine analogue for bioimaging HClO was developed. Owing to a specific HClO induced cyclization reaction, the new probe shows large fluorescence enhancement (about 106-fold), good linear range with high sensitivity (detection limit: 40 nM), high selectivity and fast response when monitoring HClO in vitro. More importantly, by successfully imaging HClO in living cells and tissues, this kind of two-photon fluorescent probe with long-wavelength emission is expected for accurate sensing in complex biosystems, which could eliminate undesired autofluorescence and self-absorption.

Keywords

Bioimaging,Fluorescent probe,HClO,Long-wavelength emission,Two-photon,