A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection.


Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China. Electronic address: [Email]


Waterborne diseases caused by pathogenic microorganisms pose a severe threat to human health. Cold atmospheric-pressure plasma (CAP) has recently gained much interest as a promising fast, effective, economical and eco-friendly method for water disinfection. However, the antimicrobial mechanism of CAP in aqueous environments is still not clearly understood. Herein, we investigate the role of several short-lived reactive oxygen species (ROS) and cellular responses in the CAP inactivation of yeast cells in water. The results show that singlet oxygen (1O2), hydroxyl radical (OH) and superoxide anion (O2-) are generated in this plasma-water system, and O2- served as the precursor of OH. The 5-min plasma treatment resulted in the effective inactivation (more than 2-log reduction) of yeast cells in water. The ROS scavengers significantly increased the survival ratio in the following order: water < D-Man (scavenging OH) < SOD (scavenging O2-) < L-His (scavenging 1O2), indicating that 1O2 contributes the most to the yeast inactivation. In addition, the acidic pH had a synergetic antimicrobial effect with ROS against the yeast cells. During the CAP inactivation process, yeast cells underwent apoptosis in the first 3 min due to the accumulation of intracellular ROS, mitochondrial dysfunction and intracellular acidification, later followed by necrosis under longer exposure times, attributed to the destruction of the cell membrane. Additionally, L-His could switch the cell fate from necrosis to apoptosis through mitigating plasma-induced oxidative stress, indicating that the level of oxidative stress is a critical factor for cell death fate determination. These findings provide comprehensive insights into the antimicrobial mechanism of CAP, which can promote the development of CAP as an alternative water disinfection strategy.


Antimicrobial mechanism,Cold atmospheric-pressure plasma (CAP),Reactive oxygen species (ROS),Singlet oxygen ((1)O(2)),Water disinfection,Yeast cells,

OUR Recent Articles