Ambient air quality changes after stubble burning in rice-wheat system in an agricultural state of India.


Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India. [Email]


Ground-based ambient air monitoring was conducted to assess the contribution of crop residue burning of wheat (Triticum aestivum) and rice (Oriza sativa) at different locations in three districts (Kaithal, Kurukshetra, and Karnal) of the agricultural state of Haryana in India for two successive years (2016 and 2017). The Air Quality Index (AQI) and concentration of primary pollutants (SOx, NOx, and PM2.5) were determined in rice and wheat crop season, for burning and non-burning periods. During crop residue burning periods, concentrations of SOx, NOx, and PM2.5 were exceeded the NAAQS values by 78%, 71%, and 53%, respectively. A significant increase in SOx (4.5 times), NOx (3.8 times), and PM2.5 concentration (3.5 times) was observed in stubble burning periods as compared to pre-burning (p < 0.05). A positive and significant correlation among the three pollutant concentrations was observed (p < 0.01). The AQI of KA site in Karnal district fell in severely polluted category during 2016 for rice as well as wheat residue burning period, and of KK site in Kaithal during wheat residue burning in year 2017. Results of present study indicate a remarkable increase in pollutant concentration (SOx, NOx, and PM2.5) during the crop residue burning periods. To the best of our knowledge, the outcomes of present study in this region have not been reported in earlier reports. Hence, there is an urgent need to curb air pollution by adopting sustainable harvesting technologies and management of residues.


Air Quality Index,NOx,PM2.5,Rice–wheat system,SOx,Stubble burning,