Amphiphilic nebramine-based hybrids Rescue legacy antibiotics from intrinsic resistance in multidrug-resistant Gram-negative bacilli.


Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, R3T 1R9, Canada. Electronic address: [Email]


The inability to discover novel class of antibacterial agents, especially against Gram-negative bacteria (GNB), compel us to consider a broader non-conventional approach to treat infections caused by multidrug-resistant (MDR) bacteria. One such approach is the use of adjuvants capable of revitalizing the activity of current existing antibiotics from resistant pathogens. Recently, our group reported a series of tobramycin (TOB)-based hybrid adjuvants that were able to potentiate multiple classes of legacy antibiotics against various MDR GNB. Herein, we report the modification of TOB-based hybrid adjuvants by replacing TOB domain by the pseudo-disaccharide nebramine (NEB) through selective cleavage of the α-d-glucopyranosyl linkage of TOB. Potent synergism was found for combinations of NEB-based hybrid adjuvants with multiple classes of legacy antibiotics including fluoroquinolones (moxifloxacin and ciprofloxacin), tetracyclines (minocycline), or rifamycin (rifampicin) against both wild-type and MDR P. aeruginosa clinical isolates. We also demonstrated that a combination of the optimized NEB-CIP hybrid 1b and rifampicin protects Galleria mellonella larvae from the lethal effects of extensively drug-resistant (XDR) P. aeruginosa. Mechanistic evaluation of NEB-based hybrid adjuvants revealed that the hybrids affect the outer- and inner membranes of wild-type P. aeruginosa PAO1. This study describes an approach to optimize aminoglycoside-based hybrids to yield lead adjuvant candidates that are able to resuscitate the activity of partner antibiotics against MDR GNB.


Adjuvants,Antibacterial,Hybrids,Multi-drug resistant Gram-negative baccilli,Nebramine,Synergy,