Arsenic immobilization through regulated ferrolysis in paddy field amendment with bismuth impregnated biochar.

Affiliation

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China. Electronic address: [Email]

Abstract

Iron minerals are important for arsenic immobilization in paddy fields; however, intensive ferrolysis causes arsenic (As) release. Bismuth-impregnated biochar derived from wheat straw (BiBC) was synthesized to immobilize arsenic by regulating the ferrolysis process in a paddy field. Further X-ray based analysis (XRD and XPS) results demonstrated that crystal particles of bismuth oxide and bismuth oxychloride were loaded on the biochar surface, helped create additional micropores and improved its specific surface area. The bioavailability of As, as determined via (non)specifically adsorbed As, decreased as the amended dosage of BiBC increased, while wheat straw biochar (WBC) resulted in arsenic release. The presence of biochar caused a faster reduction rate of iron oxides; however, BiBC promoted the sequential co-precipitation of iron and arsenic ions. Adsorption kinetic experiments indicated that ferrous ions facilitated precipitation of As on the surface of BiBC. The XRD analysis of soil samples showed BiBC facilitated the formation/stability of FeOOH. Thus, amendment with BiBC regulated ferrolysis to buffer iron leaching, which contributed to arsenic immobilization under flooding conditions. This study demonstrated the feasibility of As immobilization by metal-impregnated biochar in paddy soils.

Keywords

Arsenic immobilization,Biochar,Bismuth,Ferrolysis,Impregnation,