Autophagy induced by low concentrations of crotonaldehyde promotes apoptosis and inhibits necrosis in human bronchial epithelial cells.

Affiliation

Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, No. 2 Fengyang Street, Zhengzhou 450001, PR China. Electronic address: [Email]

Abstract

Crotonaldehyde is a common environmental contaminant. Autophagy, apoptosis, and necrosis, were all respectively reported to be induced by crotonaldehyde. However, the relationships between programmed cell deaths, especially between autophagy and apoptosis, have not been elucidated. In the present study, alterations of autophagy, apoptosis and necrosis were investigated in human bronchial epithelial cells (BEAS-2B) exposed to crotonaldehyde, and effects of autophagy on apoptosis and necrosis were detected. We found that a high concentration (160 μmol/L, μM) of crotonaldehyde did not induce apoptosis, while a low concentration (80 μM) of crotonaldehyde induced autophagy, apoptosis and necrosis. In 80 μM crotonaldehyde-exposed BEAS-2B cells, autophagy and apoptosis exhibited a trend of increasing prior to decreasing with the increase of time, while the time point inducing the highest level of autophagy was 2 h, and that of apoptosis was 4 h. With the pretreatment of bafilomycin A1, the apoptosis was inhibited and the necrosis was enhanced significantly in cells exposed to 80 μM crotonaldehyde. Autophagy mediated the induction of apoptosis via the intrinsic apoptotic pathway. The results indicate that autophagy mediates the initiation of apoptosis and plays a role in protecting from necrosis in low concentrations of crotonaldehyde-exposed BEAS-2B cells.

Keywords

Apoptosis,Autophagy,Crotonaldehyde,Necrosis,Programmed cell deaths,