Biosensing capabilities of bioelectrochemical systems towards sustainable water streams: Technological implications and future prospects.


Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Biotechnology, National Institute of Technology Warangal, Telangana 506004, India. Electronic address: [Email]


Bioelectrochemical systems (BESs) have been intensively investigated over the last decade owing to its wide-scale environmentally friendly applications, among which wastewater treatment, power generation and environmental monitoring for pollutants are prominent. Different variants of BES such as microbial fuel cell, microbial electrolysis cell, microbial desalination cell, enzymatic fuel cell, microbial solar cell, have been studied. These microbial bioelectrocatalytic systems have clear advantages over the existing analytical techniques for sustainable on-site application in wide environmental conditions with minimum human intervention, making the technology irrevocable and economically feasible. The key challenges to establish this technology are to achieve stable and efficient interaction between the electrode surface and microorganisms, reduction of time for start-up and toxic-shock recovery, sensitivity improvement in real-time conditions, device miniaturization and its long-term economically feasible commercial application. This review article summarizes the recent technical progress regarding bio-electrocatalytic processes and the implementation of BESs as a biosensor for determining various compositional characteristics of water and wastewater.


Bioelectrochemical systems,Biosensor,Chemical oxygen demand,Environmental monitoring,Self-powered,Toxicity,

OUR Recent Articles