Bis-coumarins; non-cytotoxic selective urease inhibitors and antiglycation agents.

Affiliation

H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia. Electronic address: [Email]

Abstract

The current study is concerned with the identification of lead molecules based on the bis-coumarin scaffold having selective urease inhibitory and antiglycation activities. For that purpose, bis-coumarins (1-44) were synthesized and structurally characterized by different spectroscopic techniques. Eight derivatives 4, 8-10, 14, 17, 34, and 40 demonstrated urease inhibition in the range of IC50 = 4.4 ± 0.21-115.6 ± 2.13 μM, as compared to standard thiourea (IC50 = 21.3 ± 1.3 μM). Especially, compound 17 (IC50 = 4.4 ± 0.21 μM) was found to be five-fold more potent than the standard. Kinetic studies were also performed on compound 17 in order to identify the mechanism of inhibition. Kinetic studies revealed that compound 17 is a competitive inhibitor. Antiglycation activity was evaluated using glycation of bovine serum albumin by methylglyoxal in vitro. Compounds 2, 11-13, 16, 17, 19-22, 35, 37, and 42 showed good to moderate antiglycation activities with IC50 values of 333.63-919.72 μM, as compared to the standard rutin (IC50 = 294.46 ± 1.5 μM). Results of both assays showed that the compounds with urease inhibitory activity did not show any antiglycation potential, and vice versa. Only compound 17 showed dual inhibition potential. All compounds were also evaluated for cytotoxicity. Compounds 17, 19, and 37 showed a weak toxicity towards 3 T3 mouse fibroblast cell line. All other compounds were found to be non-cytotoxic. Urease inhibition is an approach to treat infections caused by ureolytic bacteria whereas inhibition of glycation of proteins is a strategy to avoid late diabetic complications. Therefore, these compounds may serve as leads for further research.

Keywords

Advanced glycation end products,Bis-coumarins,Diabetes,Glycation,Non-cytotoxic,Peptic ulcer,Urease,

OUR Recent Articles