Blocking Ras inhibition as an antitumor strategy.


María L López-Rodríguez


Department of Organic Chemistry I, Universidad Complutense de Madrid, Av. Complutense s/n, E-28040 Madrid, Spain. Electronic address: [Email]


Ras proteins are among the most frequently mutated drivers in human cancer and remain an elusive pharmaceutical targeting. Previous studies have improved the understanding of Ras structure, processing, and signaling pathways in cancer cells and have opened new possibilities for inhibiting Ras function. In this review we discuss the most recent advances towards inhibiting Ras activity with small molecules, highlighting the two approaches: (i) compounds that bind directly to Ras protein and (ii) inhibitors of the enzymes involved in the post-translational modifications of Ras. In the former, we analyze the most recent contributions in each of the main classes of Ras direct binders, including the different types of nucleotide exchange inhibitors, allosteric compounds, and molecules that interfere with the interaction between Ras and its effectors. In the latter, we examine the compounds that inhibit Ras activation by blocking any of its post-translational modifications. Also, a special focus is made on those molecules that have progressed the farthest from medicinal chemistry and drug development points of view. Finally, the current scene regarding the clinical trials of Ras inhibitors, together with the future promising avenues for further development of the challenging Ras field are reviewed.


Cancer,GEF,Inhibitor,Ras,Ras-effector interaction,Small GTPase,