Characterization of the Chloroplast Genome of Trentepohlia odorata (Trentepohliales, Chlorophyta), and Discussion of its Taxonomy.


Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. [Email]


Trentepohliales is an aerial order of Chlorophyta with approximately 80 species distributed mainly in tropical and subtropical regions. The taxonomy of this genus is quite difficult and presents a challenge for many phycologists. Although plentiful molecular data is available, most of the sequences are not identified at the species level. In the present study, we described a new specimen with detailed morphological data and identified it as Trentepohlia odorata. A phylogenetic analysis showed T. odorata as a novel lineage in Trentepohliales. T. odorata has the closest relationship with T. annulata, which is expected since sporangia of both species are without stalk cell and with dorsal pore. Species with such morphological characteristics may represent deep lineages in Trentepohliales. Although an increasing number of chloroplast genomes of Ulvophyceae have been reported in recent years, the whole plastome of Trentepohliales has not yet been reported. Thus, the chloroplast genome of Trentepohlia odorata was reported in the present study. The whole plastome was 399,372 bp in length, with 63 predicted protein-coding genes, 31 tRNAs, and 3 rRNAs. Additionally, we annotated 95 free-standing open reading frames, of which seven were annotated with plastid origins, 16 with eukaryotic genome origins, and 33 with bacterial genome origins. Four rpo genes (rpoA, rpoB, rpoC1, and rpoC2) were annotated within ORF clusters. These four genes were fragmented into several (partial) ORFs by in-frame stop codons. Additionally, we detected a frame shift mutation in the rpoB gene. The phylogenetic analysis supported that Trentepohliales clustered with Dasycladales and nested into the BDT clade (Bryopsidales, Dasycladales and Trentepohliales). Our results present the first whole chloroplast genome of a species of Trentepohliales and provided new data for understanding the evolution of the chloroplast genome in Ulvophyceae.


Trentepohlia odorata,Trentepohliales,chloroplast genome,free-standing ORFs,introns,phylogenetic analysis,taxonomic study,