Chrysin protects against behavioral, cognitive and neurochemical alterations in a 6-hydroxydopamine model of Parkinson's disease.


Laboratory of Pharmacology, Mycotoxins and Toxicology (LAFARMT), Federal University of Santa Maria, Santa Maria, RS, Brazil. Electronic address: [Email]


Parkinson's disease (PD) is an age-related neurodegenerative disorder that severely affects quality of life of patients and their families. The flavonoid chrysin (5,7-dihydroxylflavone) is a naturally occurring flavone with several pharmacological activities, including anti-inflammatory and anti-oxidative. We investigated the effects of a 28-day chrysin treatment (10 mg/kg/day, i.g.) on a model of PD induced by 6-OHDA in aged (20-month old) mice. We found a protective effect of chrysin on behavioral and cognitive alterations (rotational behavior, passive avoidance and Barnes maze tests), nitric oxide synthesis (NOx), lipid peroxidation (HNE), glutathione levels (GSH), reactive species levels (RS), neuroinflammation (interleukin-1 beta - IL-1β and tumor necrosis factor alpha - TNF-α), Na+, K+-ATPase and nicotinamide adenine dinucleotide phosphate oxidase activity (NADPH oxidase) activities. In addition, chrysin protected against changes in striatal dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. In conclusion, chrysin improved several behavioral, cognitive and neurochemical parameters in a relevant preclinical model of PD in aged mice.


Behavior,Dopaminergic neurons,Neuroinflammation,Old-mice,Oxidative stress,

OUR Recent Articles