Cobalt nanowire-based multifunctional platform for targeted chemo-photothermal synergistic cancer therapy.

Affiliation

School of Chemical Engineering, Sichuan University, Chengdu 610064, China; Department of Mechanical Engineering, The University of Hong Kong, 999077, Hong Kong, China. Electronic address: [Email]

Abstract

Cobalt nanowires (CoNWs) simultaneously possessing advantages in photothermal effect, targeting drug delivery and photoacoustic imaging property are hopefully promising strategies to further improve the treatment efficiency and reduce the side effects of cancer chemotherapy. Herein, a unique cobalt-based structure decorated with graphene oxide (GO) and polyethylene glycol (PEG) is fabricated through a facile approach. The resultant nanohybrids show relatively low cytotoxicity, favorable biocompatibility as well as inherit the outstanding properties of cobalt. Moreover, CoNWs decorated with GO and PEG (CoNWs-GO-PEG) can load therapeutic drug molecules (e.g., doxorubicin, DOX) with a high drug loading capacity (992.91 mg/g), and simultaneously they are responsive to pH, NIR (near-infrared) irradiation and magnetism stimulation. Accordingly, CoNWs-GO-PEG-DOX shows the satisfactory effect of eliminating cancer cells with synergistic chemo-photothermal therapy in vitro. Current work provides a solid demonstration of the potential of CoNWs-GO-PEG for serving as a targeted antitumor agent in synergistic chemo-photothermal therapy.

Keywords

Cancer therapy,Cobalt nanowires,Graphene oxide,Photothermal,Targeted,