Conformer-specific [1,2]H-tunnelling in captodatively-stabilized cyanohydroxycarbene (NC-C[combining umlaut]-OH).


Institute of Organic Chemistry , Justus Liebig University , Heinrich-Buff-Ring 17, 35392 Giessen , Germany . Email: [Email]


We report the gas-phase preparation of cyanohydroxycarbene by high-vacuum flash pyrolysis of ethyl 2-cyano-2-oxoacetate and subsequent trapping of the pyrolysate in an inert argon matrix at 3 K. After irradiation of the matrix with green light for a few seconds singlet trans-cyanohydroxycarbene rearranges to its cis-conformer. Prolonged irradiation leads to the formation of cyanoformaldehyde and isomeric isocyanoformaldehyde. Cis- and trans-cyanohydroxycarbene were characterized by matching matrix IR and UV/Vis spectroscopic data with ab initio coupled cluster and TD-DFT computations. Trans-cyanohydroxycarbene undergoes a conformer-specific [1,2]H-tunnelling reaction through a 33.3 kcal mol-1 barrier (the highest penetrated barrier of all H-tunnelling reactions observed to date) to cyanoformaldehyde with a half-life of 23.5 ± 0.5 d; this is the longest half-life reported for an H-tunnelling process to date. During the tunnelling reaction the cis-conformer remains unchanged over the same period of time and the Curtin-Hammett principle does not apply. NIR irradiation of the O-H stretching overtone does not enhance the tunnelling rate via vibrational activation. Push-pull stabilisation of hydroxycarbenes through σ- and π-withdrawing groups therefore is even more stabilizing than push-push substitution.