Construction of β-cyclodextrin-based supramolecular hyperbranched polymers self-assemblies using AB2-type macromonomer and their application in the drug delivery field.


Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China. Electronic address: [Email]


Despite some efforts have been made in the research of supramolecular hyperbranched polymers (SHPs) self-assemblies, the study which has not been consideration to date is the influence of incoming stimuli-responsive polymer chain on their self-assembly property undergo outer stimuli. The introduction of stimuli-responsive segments which could maintain their hydrophilic property are expected to affect the self-assembly behaviour of SHPs and expand their further biomedical application. In this paper, AB2-type macromolecular monomer, LA-(CD-PDMA)2, which consisted one lithocholic acid (LA) and two β-cyclodextrin terminated poly(2-(dimethylamino)ethyl methacrylate) segments (CD-PDMA) was synthesized. LA-(CD-PDMA)2 based SHP were obtained based on the host-guest inclusion interactions of CD/LA moietes and with PDMA as pH-responsive hydrophilic chains. As a control to study the influence of incoming PDMA chains, both LA-(CD-PDMA)2 based SHPs-1 and LA-CD2 based SHPs-2 self-assemblies were comparatively investiged through 2D 1H NMR ROESY, transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results suggested that except for the higher drug loading efficiency LA-(CD-PDMA)2 based SHPs-1 pocessing, the release rates of SHPs-1 increased notably at pH 5.0 than that of pH 7.4 due to the repulsion and stretch of protonated PDMA chains while the release rates of SHPs-2 showed no obvious difference. Finally, basic cell experiments demonstrated that the SHPs based self-assemblies can be internalized into cancer cells, indicating their potential application in the drug delivery field.


Drug delivery,Host-guest interactions,Self-assembly behavior,Supramolecular hyperbranched polymer,β-Cyclodextrin,

OUR Recent Articles