Crucial roles of oxygen and superoxide radical in bisulfite-activated persulfate oxidation of bisphenol AF: Mechanisms, kinetics and DFT studies.

Affiliation

MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China. Electronic address: [Email]

Abstract

Though natural reducing agents have been demonstrated as desirable catalysts for environmental remediation, the mechanism of catalytic activation of persulfate (PS) by bisulfite (S(IV)) remains unclear. In this study, an emerging contaminant bisphenol AF (BPAF) was employed as the target compound to examine the activation and degradation mechanism in PS/S(IV) system. Sulfate radical (SO4•-) was evidenced as the dominant radical accounting for BPAF degradation via quantitative analysis, while hydroxyl radical (•OH) and singlet oxygen (1O2) were minor contributors. Superoxide radical (O2•-) was identified as an intermediate radical in promoting BPAF removal through quenching experiments and electron paramagnetic resonance analysis. Tests in oxygen-rich and oxygen-deficient systems were conducted and the results were contrasted to elucidate the important role of oxygen in BPAF degradation and SO4•--formation. In addition, the effect of Dissolved Oxygen (DO) was simulated using two separate kinetic models. Decomposition mechanism of BPAF was afterwards clarified via the density-functional theory calculations using Fukui index to predict the vulnerable sites and the intermediate products. This study provides a mechanistic understanding of the activation of PS/S(IV) system on the BPAF removal, especially the critical role of DO and O2•- in SO4•- generation.

Keywords

Bisulfite,DFT calculations,Kinetics,Persulfate,Reactive oxygen species,

OUR Recent Articles