Default mode network integrity changes contribute to cognitive deficits in subcortical vascular cognitive impairment, no dementia.


Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun Street, Beijing, 100053, China. [Email]


Vascular cognitive impairment, no dementia (VCIND) refers to cognitive deficits associated with underlying vascular causes that are insufficient to confirm a diagnosis of dementia. The default mode network (DMN) is a large-scale brain network of interacting brain regions involved in attention, working memory and executive function. The role of DMN white matter integrity in cognitive deficits of VCIND patients is unclear. Using diffusion tensor imaging (DTI), this study was carried out to investigate white matter microstructural changes in the DMN in VCIND patients and their contributions to cognitive deficits. Thirty-one patients with subcortical VCIND and twenty-two healthy elderly subjects were recruited. All patients underwent neuropsychological assessments and DTI examination. Voxel-based analyses were performed to extract fractional anisotropy (FA) and mean diffusivity (MD) measures in the DMN. Compared with the healthy elderly subjects, patients diagnosed with subcortical VCIND presented with abnormal white matter integrity in several key hubs of the DMN. The severity of damage in the white matter microstructure in the DMN significantly correlated with cognitive dysfunction. Mediation analyses demonstrated that DTI values could account for attention, executive and language impairments, and partly mediated global cognitive dysfunction in the subcortical VCIND patients. DMN integrity is significantly impaired in subcortical VCIND patients. The disrupted DMN connectivity could explain the attention, language and executive dysfunction, which indicates that the white matter integrity of the DMN may be a neuroimaging marker for VCIND.


Cognitive function,Default mode network,Diffusion tensor imaging,Vascular cognitive impairment, no dementia,