Diacerein protects against glycerol-induced acute kidney injury: Modulating oxidative stress, inflammation, apoptosis and necroptosis.


Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt. Electronic address: [Email]


Necroptosis is suggested to have an important role in the pathogenesis of rhabdomyolysis induced acute kidney injury (AKI). In this study, the renoprotective effect of diacerein on glycerol-induced AKI was investigated. Twenty four male albino rats were included in this study and divided into four groups: (group I) saline control group, (group II) glycerol-treated group, (groups III&IV) diacerein + glycerol -treated groups (25 and 50 mg/kg/day) respectively. Renal malondialdehyde (MDA) level in addition to catalase and heme oxygenase (HO) activities were estimated. Comet assay and histopathological changes were evaluated. The levels of pro-apoptotic Bcl-2-associated X (Bax) protein, tumor necrosis factor alpha (TNF-α) and receptor-interacting serine/threonine-protein kinases 3 (RIPK3) were measured by ELISA. RIPK3 and mixed lineage kinase domain-like pseudokinase (MLKL) mRNA expression were assessed by real time PCR. Glycerol treatment caused significant renal histological abnormalities and functional impairment (increased urea and creatinine). Increased levels of renal MDA with concomitant decrease in renal catalase activity and significant DNA damage in comet assay were observed. High expression of RIPK3 and MLKL in the glycerol-treated group with marked elevation of Bax, TNF-α and RIPK3 levels and HO-1 activity were also documented. Diacerein treatment dependently attenuated glycerol induced structural and functional changes in kidney and significantly elicit reduction of renal tissue oxidative damage whereas it decreased renal expression of RIPK3 and MLKL, and decreased Bax, TNF-α and RIPK3 levels and HO-1 activity. CONCLUSION: These results demonstrated that diacerein might have potential application in the amelioration of AKI via its anti-oxidant, anti-inflammatory, anti-apoptotic and anti-necroptotic effects.


Acute kidney injury,Diacerein,Necroptosis,RIPK3 and MLKL,Rhabdomyolysis,