Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on spontaneous movement of human neuroblastoma cells.


State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address: [Email]


Aryl hydrocarbon receptor (AhR) plays important roles in the interferences of dioxin exposure with the occurrence and development of tumors. Neuroblastoma is a kind of malignant tumor with high mortality and its occurrence is getting higher in dioxin exposed populations. However, there is still a lack of direct evidence of influences of dioxin on neuroblastoma cell migration. SK-N-SH is a human neuroblastoma cell line which has been used to reveal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced dysregulation of certain promigratory gene. Thus, in this study, we employed SK-N-SH cells to investigate the effects of TCDD on the spontaneous movement of neuroblastoma cells, which is a short-range cell migratory behavior related to clone formation and tumor metastasis in vitro. Using unlabeled live cell imaging and high content analysis, we characterized the spontaneous movement under a full-nutrient condition in SK-N-SH cells. We found that the spontaneous movement of SK-N-SH cells was inhibited after 36- or 48-h treatment with TCDD at relative low concentrations (10-10 or 2 × 10-10 M). The TCDD-treated cells were unable to move as freely as that of control cells, resulting in less diffusive trajectories and a decreased displacement of the movement. In line with this cellular effect, the expression of pro-adhesive genes was significantly induced in time- and concentration-dependent manners after TCDD treatment. In addition, with the presence of AhR antagonist, CH223191, the effects of TCDD on the gene expression and the spontaneous cell movement were effectively reversed. Thus, we proposed that AhR-mediated up-regulation of pro-adhesive genes might be involved in the inhibitory effects of dioxin on the spontaneous movement of neuroblastoma cells. To our knowledge, this is the first piece of direct evidence about the influence of dioxin on neuroblastoma cell motility.


Aryl hydrocarbon receptor,Cell adhesion,Dioxin,Neuroblastoma,Spontaneous movement,

OUR Recent Articles