Effects of Cytotoxic T Lymphocyte-Associated Antigen 4 Immunoglobulin Combined with Microbubble-Mediated Irradiation on Hemodynamics of the Renal Artery in Rats with Diabetic Nephropathy.

Affiliation

Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. Electronic address: [Email]

Abstract

Cytotoxic T lymphocyte-associated antigen 4 immunoglobulin (CTLA-4-Ig) can inhibit the effect of B7-1 and improve renal hemodynamics in rats with diabetic nephropathy (DN). Nevertheless, a strategy that could increase the permeation of CTLA-4-Ig through endothelial cells and basement membrane remains to be discovered. We investigated the effect of CTLA-4-Ig combined with microbubble-mediated irradiation on the hemodynamics of renal arteries in DN rats. Rats were treated with CTLA-4-Ig and/or microbubble exposure. After 8 wk of intervention, color Doppler ultrasonography was used to detect peak systolic velocity (PSV), end-diastolic velocity (EDV), mean velocity (MV), systolic acceleration (SAC), pulsatility index (PI) and resistance index (RI) of the renal artery trunk. The CTLA-4-Ig + microbubble exposure group exhibited significantly higher PSV, EDV and MV than the CTLA-4-Ig group, which had significantly higher values than the non-intervention group. The CTLA-4-Ig + microbubble exposure group exhibited significantly lower SAC, PI and RI than the CTLA-4-Ig group, which had significantly lower values than the non-intervention group. Our results indicate that both CTLA-4-Ig and CTLA-4-Ig + microbubble exposure can reduce the blood flow resistance and improve the blood flow velocity of renal arteries in rats. Moreover, the effect of CTLA-4-Ig + microbubble exposure is better than that of CTLA-4-Ig alone. Our study provides a new, effective and non-invasive strategy for the treatment of DN.

Keywords

Color Doppler ultrasonography,Cytotoxic T lymphocyte-associated antigen 4 immunoglobulin,Diabetic nephropathy,Microbubble,Podocyte,Ultrasound,

OUR Recent Articles