Effects of bi-level positive airway pressure on ventilatory and perceptual responses to exercise in comorbid heart failure-COPD.

Affiliation

Laboratory of Clinical Exercise Physiology and Respiratory Investigation Unit, Queen's University & Kingston General Hospital, Kingston, ON, Canada. Electronic address: [Email]

Abstract

This study tested the hypothesis that, by increasing the volume available for tidal expansion (inspiratory capacity, IC), bi-level positive airway pressure (BiPAP™) would lead to greater beneficial effects on dyspnea and exercise intolerance in comorbid heart failure (HF)-chronic obstructive pulmonary disease (COPD) than HF alone. Ten patients with HF and 9 with HF-COPD (ejection fraction = 30 ± 6% and 35 ± 7%; FEV1 = 83 ± 12% and 65 ± 15% predicted, respectively) performed a discontinuous exercise protocol under sham ventilation or BiPAP™. Time to intolerance increased with BiPAP™ only in HF-COPD (p < 0.05). BiPAP™ led to higher tidal volume and lower duty cycle with longer expiratory time (p < 0.05). Of note, BiPAP™ improved IC (by ∼0.5 l) across exercise intensities only in HF-COPD. These beneficial consequences were associated with lower dyspnea scores at higher levels of ventilation (p < 0.05). By improving the qualitative" (breathing pattern and operational lung volumes) and sensory (dyspnea) features of exertional ventilation, BiPAP™ might allow higher exercise intensities to be sustained for longer during cardiopulmonary rehabilitation in HF-COPD.

Keywords

COPD,Cardiopulmonary exercise test,Dyspnea,Exercise,Heart failure,Mechanical ventilation,

OUR Recent Articles