Exposure to homocysteine leads to cell cycle damage and reactive gliosis in the developing brain.


Universidade Federal de Santa Catarina, Campus Universitário, Trindade, Florianópolis, SC, 88040-900, Brazil. Electronic address: [Email]


Studies that investigate the cellular effects of homocysteine (Hcy) on the differentiation of neural cells, and their involvement in establishment of cell layers in the developing brain are scarce. This study evaluated how Hcy affects the neural cell cycle and proteins involved in neuronal differentiation in the telencephalon and mesencephalon using the chicken embryo as a model. Embryos at embryonic day 2 (E2) received 20 μmol D-L Hcy/50 μl saline and analyzed at E6. The Hcy treatment induced an increase in the ventricular length of the telencephalon and also a reduction of the mantle layer thickness. We observed that Hcy induced impairments to the neural cell cycle and differentiation, which compromised the cell layers establishment in the developing brain. Hcy treatment also induced changes in gene and protein expression of astrocytes, characteristic of reactive gliosis. Our results point to new perspectives of evaluation of cellular targets of Hcy toxicity.


Cellular layers,Chicken embryo,Hyperhomocysteinemia,Neuronal and glial cells,