Facile synthesis of highly efficient fluorescent carbon dots for tetracycline detection.

Affiliation

School of Ocean Science and Technology, Dalian University of Technology, Panjin Campus, Liaoning, China. [Email]

Abstract

Rampant use of tetracycline in animal feed is a threat to food security, the environment, and human health because of the risk of drug residues. Therefore, it is necessary to establish a sensitive, efficient, and reliable method for qualitative and quantitative detection of tetracycline. In this paper, we synthesized fluorescent carbon dots (FCDs) by thermal cracking of crab shell waste, and obtained a fluorescence quantum yield of 30%. Characterization of the FCDs by transmission electron microscopy, Fourier-transform infrared spectroscopy, ultraviolet visible absorption spectroscopy, and photoluminescence spectroscopy showed that they were fluorescent and evenly distributed with an average size of approximately 10 nm. We designed a sensitive probe for detecting tetracycline using the fluorescence intensity change of the FCDs. This method is sensitive, inexpensive, and environmentally friendly. The concentration of tetracycline was examined by comparing the fluorescence intensities of the FCDs before and after tetracycline addition. The limit of detection for tetracycline was 0.005 mg/L (signal-to-noise ratio = 3), which is promising for method development.

Keywords

Carbon quantum dots,Crab shell,Fluorescence quenching,Tetracycline,

OUR Recent Articles