Fe(II)-dosed ceramic membrane bioreactor for wastewater treatment: Nutrient removal, microbial community and membrane fouling analysis.


Research Institute of Environmental Engineering & Nano-Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China. Electronic address: [Email]


Ferrous dosing is used to reduce phosphorus concentration and alleviate polymeric membrane fouling in membrane bioreactor (MBR). However, limited studies have been conducted to investigate the impacts of ferrous dosing on ceramic membrane fouling, nutrient removal efficiency and microbial community. Accordingly, the aim of this study was to investigate the effect of intermittent ferrous dosing with Fe/P molar ratios of 2 and 1 (with a dosing frequency of every two days) on the overall nutrient removal, functional microbial changes and membrane fouling in ceramic membrane bioreactors (CMBR) in treatment of wastewater. TP concentration of 10 mg/L in influent decreased to 1.94 ± 0.62 mg/L (control), 0.38 ± 0.22 mg/L (Fe/P = 1) and 0.31 ± 0.18 mg/L (Fe/P = 2) in the effluent, respectively. Meanwhile, the effluent total nitrogen (TN) concentrations with Fe/P = 1 treatment (6.80 ± 2.02 mg/L) and Fe/P = 2 treatment (5.12 ± 2.28 mg/L) were lower than that of the control (7.72 ± 2.36 mg/L). Compared to Fe/P = 1, the TN removal performance was better for Fe/P = 2 mainly due to the increased abundance of denitrifying bacteria (Zoogloea and Acinetobacter). In addition, excess iron dose might have toxic effects on bacterial physiology, however the Fe concentrations that cause cell damage vary for different bacteria. The relative abundance of Zoogloea (aerobic denitrifying bacteria) continuously increased with ferrous addition (Fe/P = 2), while other bacteria including Dechloromonas, Hyphomicrobium and Thauera (anoxic denitrifying bacteria), Nitrospira (nitrifying bacteria) and Candidatus Accumulibacter (phosphorus accumulating organism) decreased sharply. Furthermore, membrane fouling was effectively moderated by ferrous dosing and Fe/P = 1 treatment showed improved membrane fouling mitigation than Fe/P = 2. Overall, intermittent ferrous addition in CMBR with Fe/P molar ratio of 1 was beneficial to the removal of nutrients (TP, TN and organics), enhanced succession of microbial community and membrane fouling mitigation.


Ceramic membrane,Ferrous,Membrane bioreactor,Membrane fouling,Phosphorus removal,

OUR Recent Articles