Feasibility of electrospraying fully aqueous bovine serum albumin solutions.


Drug Delivery and Disposition, KU Leuven, Leuven, Belgium. Electronic address: [Email]


Electrospraying or electrohydrodynamic atomisation, i.e. the formation of tiny droplets from a jet of conductive liquid under the influence of an electric field, has been gaining in popularity as a particle engineering technique in recent years. In addition to general benefits for particle engineering, e.g. the ability to generate nanometre sized particles with a very narrow size distribution, electrospraying also possesses a number of characteristics, like its applicability at ambient conditions, which could make it especially interesting for formulating therapeutic proteins. However, as fully aqueous solutions of proteins tend to have relatively high electrical conductivities and surface tensions, obtaining a stable Taylor cone-jet mode for these solutions is inherently challenging. This is why in the majority of studies reporting the successful electrospraying of proteins, either emulsions, aqueous suspensions or a mixture of water and one or more organic solvents were used instead of fully aqueous solutions. Therefore, an ab initio electrospraying formulation development study was conducted, using only fully aqueous feed solutions containing protein stabilising excipients commonly used in spray- and freeze-drying of therapeutic proteins. The study included bovine serum albumin (BSA) as a model protein and consisted out of two parts: (1) a one parameter at a time screening study, designed to improve the understanding of how various formulation components influence relevant physicochemical properties and the electrospraying process and (2) two subsequent mixture design of experiments (DoE) studies, designed to aid in the statistical description and prediction of the influence of different protein-excipient combinations on the electrospraying process. Additionally, the influence of physicochemical properties relevant to the electrospraying process, i.e. the volumetric mass density, electrical conductivity, kinematic viscosity and surface tension, was assessed for all feed solutions included in the study.


Bovine serum albumin,Design of experiments,Electrical conductivity,Electrohydrodynamic atomisation,Electrospraying,Fully aqueous protein solutions,Kinematic viscosity,Physicochemical characterisation,Protein formulation,Surface tension,Taylor cone-jet mode,Volumetric mass density,

OUR Recent Articles