Flexible Photocatalytic Paper with Cu2O and Ag Nanoparticle-Decorated ZnO Nanorods for Visible Light Photodegradation of Organic Dye.


Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan. [Email]


We report on the fabrication of flexible photocatalytic paper comprised of Cu2O and Ag nanoparticle (NP)-decorated ZnO nanorods (NRs) and its application in visible light photodegradation of organic dye. ZnO NRs are first grown on a kraft paper substrate using a hydrothermal method. The NRs are subsequently decorated with Cu2O, Ag, or both NPs formed by photoreduction processes. Scanning electron microscopy and X-ray diffraction analysis confirm the crystallinity of ZnO NRs. Transmission electron microscopy analysis confirms the compositions of the two types of NPs. Four different types of photocatalytic papers with a size of 10 × 10 cm2 are prepared and used to degrade a 10-μM and 100-mL rhodamine B solution. The paper with Cu2O and Ag NP-co-decorated ZnO NRs has the best efficiency with first-order kinetic constants of 0.017 and 0.041 min-1 under the illumination of a halogen lamp and direct sunlight, respectively. The performance of the photocatalytic paper compares well with other substrate-supported ZnO nanocomposite photocatalysts. With the advantages of flexibility, light weight, nontoxicity, low cost, and ease of fabrication, the photocatalytic paper has good potential for visible light photocatalysis.


Ag nanoparticle,Cu2O nanoparticle,Photocatalysis,Photocatalytic paper,ZnO nanorod,