GH36 α-galactosidase from Lactobacillus plantarum WCFS1 synthesize Gal-α-1,6 linked prebiotic α-galactooligosaccharide by transglycosylation.

Affiliation

Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP 201 002, India. Electronic address: [Email]

Abstract

α-Galactosidases are potent industrial glycoside hydrolases which are relatively less explored for their transglycosylation potential, especially from Lactobacillus genera. A GH36 α-galactosidase from Lactobacillus plantarum WCFS1 was cloned and over expressed in Hi-control Escherichia coli BL21(DE3). Ni-NTA affinity gel chromatography resulted in purified α-galactosidase (LpαG; specific activity 3077.35 U mg-1) having a monomeric weight of ~80 kDa with 29.3% yield. Size exclusion chromatography of LpαG showed native molecular mass of ~240.5 kDa. LpαG displayed optimum activity at pH 6 and 37 °C. The Km,Vmax and kcat/Km of LpαG towards pNPαGal were found to be 0.93 mM and 714.3 μmol ml-1 min-1 and 12,075 s-1 mM-1, respectively. LpαG displayed maximum transglycosylation activity towards melibiose substrate (as both donor and acceptor) and synthesized majorly a trisaccharide with 0.26 mg ml-1 yield. Nuclear magnetic resonance (NMR) characterization revealed that trisaccharide consist of only single species of α-linked galactooligosaccharide (manninotriose; α-d-Galp-(1 → 6)-α-d-Galp-(1 → 6)-d-Glcp) with α-(1 → 6) regioselectivity. Manninotriose displayed prebiotic property by supporting the growth of probiotic L. plantarum WCFS1 and Bifidobacteria adolescentis DSM 20083.

Keywords

Characterization,GH36 α-galactosidase,Prebiotic,Transglycosylation,α-Galactooligosaccharides,

OUR Recent Articles