Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou 510275, People's Republic of China. Electronic address: [Email]
Precious metals were lost in the current technologies of recovering waste printed circuit boards (WPCBs). Microbe-produced cyanide is considered as an important lixiviant in bioleaching of precious metals from WPCBs. Enhancing cyanide production is the key to industrialization of bioleaching technology. This study identified the precursor form of biogenic cyanide, investigated the energy characteristics of cyanide synthesis, thermal change characteristics of cyanogenic culture, and the potential kinetic relationship between cyanide production and thermal change. We firstly found glycine anion [H2NCH2CO2]- was the precursor form of cyanide in microbial biocatalysis. The bond cleavage pathways from glycine anion to cyanide were analyzed by computation chemical. Results showed decomposition of glycine anion into cyanide was endothermic and non-spontaneous. Formations of [HN = CHCO2]- and -C≡N have an average energy barrier of 34.05 and 9.15 kcal/mol respectively, while formations of free radicals from anionic intermediates have an average barrier of 71.05 kcal/mol. Cyanide concentration began to increase from 0.48 to 5.27 mg/L when heat production was strongest. Temperature difference between sterile medium and cyanogenic culture reached 0.3 °C. Therefore, metabolic heat brought positive effect on cyanide biosynthesis.