High Oxidation Resistance of CVD Graphene-Reinforced Copper Matrix Composites.


Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China. [Email]


Copper-based materials are common industrial products which have been broadly applied to the fields of powder metallurgy, electrical contact, and heat exchangers, etc. However, the ease of surface oxidation limits the durability and effectiveness of copper-based components. Here, we have developed a powder metallurgy process to fabricate graphene/copper composites using copper powders which were first deposited with graphene layers by thermal chemical vapor deposition (CVD). The graphene/copper composites embedded with an interconnected graphene network was then able to be obtained by vacuum hot-pressing. After thermal oxidation (up to 220 °C) in humid air for several hours, we found that the degree of surface oxidation of our samples was much less than that of their pure Cu counterpart and our samples produced a much smaller increase of interfacial contact resistance when used as electrical contact materials. As a result, our graphene/copper composites showed a significant enhancement of oxidation resistance ability (≈5.6 times) compared to their pure Cu counterpart, thus offering potential applications as novel electrical contact materials.


CVD graphene,electrical contact materials,graphene/copper composites,oxidation resistance,

OUR Recent Articles