High internal phase pickering emulsions stabilized by pea protein isolate-high methoxyl pectin-EGCG complex: Interfacial properties and microstructure.

Affiliation

Feng T(1), Wang X(1), Wang X(1), Zhang X(1), Gu Y(2), Xia S(3), Huang Q(4).
Author information:
(1)State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
(2)School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
(3)State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China. Electronic address: [Email]
(4)Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA. Electronic address: [Email]

Abstract

The pea protein isolate-high methoxyl pectin-epigallocatechin gallate (PPI-HMP-EGCG) complex was used to stabilize Pickering emulsions (PEs) and high internal phase PEs (HIPPEs), and the effect of interfacial rheology on the microstructure, bulk rheology and stability of these emulsions was investigated. The PPI-HMP-EGCG complex with PPI to EGCG 30:1 exhibited partial wettability (81.6 ± 0.4°) and optimal viscoelasticity for the formation of stable interfacial layer. The microstructure demonstrated that the PPI-HMP-EGCG complex acted as an interfacial layer and surrounded the oil droplets, and continuous phases were mainly filled with excessive HMP, which enhanced emulsion stability. The formation of a firm gel-like network structure required a dense interfacial layer to provide the PEs (complex concentration of 0.1%) and HIPPEs (oil-phase up to 0.83) with ideal viscoelasticity and stability. The results provide the guidelines for the rational design of EGCG-loaded HIPPEs stabilized by water-soluble protein/polysaccharide complexes.