Identification of the molecular components of a putative Jasus edwardsii (Crustacea; Decapoda; Achelata) circadian signaling system.


Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI, 96822, USA. [Email]


Like all organisms, members of the crustacean order Decapoda must coordinate their physiology and behavior to accommodate recurring patterns of environmental change. Genetically encoded biological clocks are responsible, at least in part, for the proper timing of these organism-environment patternings. While biological clocks cycling on a wide range of timescales have been identified, the circadian signaling system, which serves to coordinate physiological/behavioral events to the solar day, is perhaps the best known and most thoroughly investigated. While many circadian patterns of physiology/behavior have been documented in decapods, few data exist concerning the identity of circadian genes/proteins in members of this taxon. In fact, large collections of circadian genes/proteins have been described from just a handful of decapod species. Here, a publicly accessible transcriptome, produced from tissues that included the nervous system (brain and eyestalk ganglia), was used to identify the molecular components of a circadian signaling system for rock lobster, Jasus edwardsii, a member of the decapod infraorder Achelata. Complete sets of core clock (those involved in the establishment of the molecular feedback loop that allows for ~ 24-h cyclical timing), clock-associated (those involved in modulation of core clock output), and clock input pathway (those that allow for synchronization of the core clock to the solar day) genes/proteins are reported. This is the first description of a putative circadian signaling system from any member of the infraorder Achelata, and as such, expands the decapod taxa for which complete complements of putative circadian genes/proteins have been identified.


Bioinformatics,Circadian signaling,Transcriptome shotgun assembly (TSA),

OUR Recent Articles