Improving biosynthesis of AuPd core-shell nanoparticles through Escherichia coli with the assistance of phytochelatin for catalytic enhanced chemiluminescence and benzyl alcohol oxidation.

Affiliation

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan. Electronic address: [Email]

Abstract

In this work, AuPd core-shell nanoparticles (NPs) biosynthesized through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (Au-Pd/AtPCS1-E. coli) with catalytic enhanced chemiluminescence (CL) and benzyl alcohol oxidation (BAO) was investigated. Such biosynthesis of AuPd core-shell NPs was obviously enhanced due to insertion of the gene sequence of Arabidopsis thaliana phytochelatin synthase (AtPCS1) to a plasmid vector (pET-28b) of Escherichia coli (E. coli). The obtained Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli (AtPCS1-E. coli) could generate phytochelatins (PCs, (γ-Glu-Cys)n-Gly, n > 1) for efficient capture and enrichment of Au3+. The component and morphology of AuPd core-shell NPs were checked through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS). Catalytic CL (in H2O2-luminol system) and BAO (in H2O2-benzyl alcohol system) effect with different experimental conditions were examined, respectively. These results revealed that multifunctional PCs could effectively facilitate biosynthetic process of AuPd core-shell NPs with better distribution, higher yield and lower cost while stronger CL intensity and higher conversion could be obtained for further quantitative analysis and application.

Keywords

AuPd core-shell nanoparticles,Benzyl alcohol oxidation,Biosynthesis,Chemiluminescence,Escherichia coli,Phytochelatin,

OUR Recent Articles