In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.


School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China. [Email]


For the development of light, flexible, and wearable electronic devices, it is crucial to develop energy storage components combining high capacity and flexibility. Herein, an all-solid-state supercapacitor is prepared through an in situ growth method. The electrode contains polyaniline deposited on a carbon nanotube and a poly (ethylene-co-vinyl acetate) film. The hybrid electrode exhibits excellent mechanical and electrochemical performance. The optimized few-layer polyaniline wrapping layer provides a conductive network that effectively enhances the cycling stability, as 66.4% of the starting capacitance is maintained after 3000 charge/discharge cycles. Furthermore, the polyaniline (PANI)-50 displays the highest areal energy density of 83.6 mWh·cm-2, with an areal power density of 1000 mW·cm-2, and a high areal capacity of 620 mF cm-2. The assembled device delivers a high areal capacity (192.3 mF·cm-2) at the current density of 0.1 mA·cm-2, a high areal energy (26.7 mWh·cm-2) at the power density of 100 mW·cm-2, and shows no significant decrease in the performance with a bending angle of 180°. This unique flexible supercapacitor thus exhibits great potential for wearable electronics.


CNT,Flexible supercapacitor electrode,PANI,Polymer conductive film,