Indinavir Increases Midazolam N-Glucuronidation in Humans: Identification of an Alternate CYP3A Inhibitor Using an In Vitro to In Vivo Approach.


Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (D.-D.T., E.J.C., V.G.-P., M.F.P.); Division of Gastroenterology and Hepatology, School of Medicine (Y.V.S.) and Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy (C.L.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Boehringer-Ingelheim Pharmaceuticals, Ridgefield, Connecticut (K.S.F., M.B.F.) [Email]


Midazolam is a widely used index substrate for assessing effects of xenobiotics on CYP3A activity. A previous study involving human hepatocytes showed the primary route of midazolam metabolism, 1'-hydroxylation, shifted to N-glucuronidation in the presence of the CYP3A inhibitor ketoconazole, which may lead to an overprediction of the magnitude of a xenobiotic-midazolam interaction. Because ketoconazole is no longer recommended as a clinical CYP3A inhibitor, indinavir was selected as an alternate CYP3A inhibitor to evaluate the contribution of the N-glucuronidation pathway to midazolam metabolism. The effects of indinavir on midazolam 1'-hydroxylation and N-glucuronidation were first characterized in human-derived in vitro systems. Compared with vehicle, indinavir (10 μM) inhibited midazolam 1'-hydroxylation by recombinant CYP3A4, human liver microsomes, and high-CYP3A activity cryopreserved human hepatocytes by ≥70%; the IC50 obtained with hepatocytes (2.7 μM) was within reported human unbound indinavir Cmax (≤5 μM). Midazolam N-glucuronidation in hepatocytes increased in the presence of indinavir in both a concentration-dependent (1-33 μM) and time-dependent (0-4 hours) manner (by up to 2.5-fold), prompting assessment in human volunteers (n = 8). As predicted by these in vitro data, indinavir was a strong inhibitor of the 1'-hydroxylation pathway, decreasing the 1'-hydroxymidazolam/midazolam area under the plasma concentration versus time curve (AUC)0-12h ratio by 80%. Although not statistically significant, the midazolam N-glucuronide/midazolam AUC0-12h ratio increased by 40%, suggesting a shift to the N-glucuronidation pathway. The amount of midazolam N-glucuronide recovered in urine increased 4-fold but remained <10% of the oral midazolam dose (2.5 mg). A powered clinical study would clarify whether N-glucuronidation should be considered when assessing the magnitude of a xenobiotic-midazolam interaction.