Insecticidal potential and repellent and biochemical effects of phenylpropenes and monoterpenes on the red flour beetle, Tribolium castaneum Herbst.


Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt. [Email]


The main objectives of the present study are to introduce new, ecologically safe, and natural compounds for controlling red flour beetle, Tribolium castaneum, and to understand the possible mode of action of these compounds. Therefore, the insecticidal and repellent activities of two phenylpropenes and six monoterpenes have been evaluated against the adults of T. castaneum. The inhibitory effects of these compounds on the activity of adenosine triphosphatases (ATPases) and acetylcholinesterase (AChE) were also tested. In fumigant toxicity assay, (-)-terpinen-4-ol (LC50 = 20.47 μl/l air) and α-terpinene (LC50 = 23.70 μl/l air) exhibited the highest toxicity without significant differences between them. Moreover, (-)-menthone and p-cymene showed strong toxicity, while (-)-citronellal, trans-cinnamaldehde, and eugenol were not active. In contact toxicity assay, the two phenylpropenes, trans-cinnamaldehde and eugenol, had the highest toxicity with same LC50 value of 0.02 mg/cm2. The monoterpenes and phenylpropenes showed pronounced repellent effect on the adults of T. castaneum at 0.001 mg/cm2 with (-)-menthone, trans-cinnamaldehyde, and α-terpinene being the most effective after 2 h of exposure. Repellent activity depended on compound, exposure time, and concentration. On the other hand, the tested compounds exhibited strong inhibition of ATPases form the larvae of T. castaneum as their IC50 values ranged between 1.74 and 19.99 mM. In addition, (-)-citronellal (IC50 = 9.82 mM) and trans-cinnamaldehde (IC50 = 23.93 mM) caused the highest inhibitory effect on AChE, while α-pinene (IC50 = 53.86) and p-cymene (IC50 = 68.97 mM) showed the weakest inhibitory effect. The results indicated that the tested phenylpropenes and monoterpenes had the potential to be developed as natural insecticides and repellents for controlling T. castaneum.


Acetylcholinesterase,Adenosine triphosphatases,Contact toxicity,Fumigant toxicity,Natural products,Repellent activity,Tribolium castaneum,