Liquid chromatography-mass spectrometry-based determination of ergocristine, ergocryptine, ergotamine, ergovaline, hypoglycin A, lolitrem B, methylene cyclopropyl acetic acid carnitine, N-acetylloline, N-formylloline, paxilline, and peramine in equine hair.


Institute of Forensic Medicine, Jena University Hospital, Jena, Germany. Electronic address: [Email]


Ingestion of hypoglycin A (HGA) in maple seeds or alkaloids produced by symbiotic fungi in pasture grasses is thought to be associated with various syndromes in grazing animals. This article describes analytical methods for monitoring long-term exposure to HGA, its metabolite MCPA-carnitine, as well as ergocristine, ergocryptine, ergotamine, ergovaline, lolitrem B, N-acetylloline, N-formylloline, peramine, and paxilline in equine hair. After extraction of hair samples separation was achieved using two ultra high performance liquid chromatographic systems (HILIC or RP-C18, ammonium formate:acetonitrile). A benchtop orbitrap instrument was used for high resolution tandem mass spectrometric detection. All analytes were sensitively detected with limits of detection between 1 pg/mg and 25 pg/mg. Irreproducible extraction or ubiquitous presence in horse hair precluded quantitative validation of lolitrem B/paxilline and N-acetylloline/N-formylloline, respectively. For the other analytes validation showed no interferences in blank hair. Other validation parameters were as follows: limits of quantification (LOQ), 10 to 100 pg/mg; recoveries, 18.3 to 91.0%; matrix effects, -48.2 - 24.4%; linearity, LOQ - 1000 pg/mg; accuracy, -14.9 - 6.4%, precision RSDs ≤10.7%. The method allows sensitive detection of all analytes and quantification of ergocristine, ergocryptine, ergotamine, ergovaline, HGA, MCPA-carnitine, and peramine in horse hair. Applicability was proven for N-acetylloline and N-formylloline by analyzing hair of 13 horses.



OUR Recent Articles