Liquid jet breakup: A new method for the preparation of poly lactic-co-glycolic acid microspheres.

Affiliation

Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China. Electronic address: [Email]

Abstract

The purpose of this study was to apply the phenomenon of liquid jet breakup to the preparation of sustained-release microspheres. The mechanisms of liquid jet breakup in different jet states were investigated and the single factor method was used to study the effect of each process parameter on the particle size and size distribution of microspheres. Meantime, the prepared microspheres were characterized by morphology, drug loading, encapsulation efficiency and in vitro release. The results indicated that the process of liquid jet breakup could have 5 different states. The laminar flow state dominated when the Reynolds number (Re) was low, and the prepared microspheres had larger particle sizes. When the Re was high, the turbulent state was dominant and the microspheres had smaller particle sizes. And during the transition state from the laminar flow to the turbulence, the microspheres had a wide particle size distribution. Different process parameters could affect the particle size and distribution of microspheres by changing the Re, surface tension coefficient and viscosity. The microspheres prepared by liquid jet breakup were smooth and round with the drug loading of 35% and the encapsulation efficiency of 88%. In addition, when the polymeric carrier materials were different, the microspheres could have various drug release models such as sustained release with a lag phase, sustained release with no lag phase, pulsed release and so on, which could be applied widespread in the future.

Keywords

Drop-size control,In vitro release,Jet breakup,Microspheres,Preparation,

OUR Recent Articles