Melatonin rescues the aneuploidy in mice vitrified oocytes by regulating mitochondrial heat product.


National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, PR China. Electronic address: [Email]


Vitrification of germinal vesicle (GV) stage oocytes has been shown to be closely associated with decreased rates of meiosis maturation and increased rates of aneuploidy. However, little is known about the effects of melatonin on these events in mice vitrified GV oocytes. In this study, the effects of melatonin on meiosis maturation potential and the incidence rate of aneuploidy in mouse vitrified oocytes were analyzed by supplementing in vitro maturation (IVM) solution with melatonin at different concentrations. This study, for the first time, showed that the mitochondrial heat production was markedly increased in vitrified oocytes (P < 0.05), which compromised the first polar body extrusion (PBE) of vitrified oocytes (73.3% vs. 85.1%, P < 0.05). However, 10-11 mol/L melatonin could significantly decrease mitochondrial heat production and ROS level (9.1 vs. 12.0 pixels, P < 0.05), meanwhile increase ATP level (1.1 vs. 0.88 pmol, P < 0.05) and mtDNA copies (107438 vs. 67869, P < 0.05), which rescued the abnormal chromosome alignment (32% vs. 69%, P < 0.05) and reduced the incidence of aneuploidy (15.6% vs. 38.5%, P < 0.05) in vitrified oocytes. The meiosis maturation ability of vitrified oocytes with melatonin supplementation was similar to that of fresh ones (83.4% vs. 85.1%, P > 0.05). Collectively, our data revealed that melatonin has a protective action against vitrification-induced injuries of oocytes meiosis maturation.