Mercury and metal(loid) deposition to remote Nova Scotia lakes from both local and distant sources.

Affiliation

Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada. Electronic address: [Email]

Abstract

Kejimkujik National Park, in Nova Scotia, Canada, is a sensitive region for metal(loid) contamination, such as mercury, in part due to long-range atmospheric deposition from global and regional industrial centers. The region is remote from industrial centres, but is downwind of major pollution sources in the Eastern United States and Canada, and historically had numerous gold mining sites. Due to a paucity of long-term atmospheric deposition monitoring in this region, little is known about the response of Kejimkujik lakes to multiple changing global, regional and local atmospheric Hg and metal(loid) sources. Here, we used multiple lake sediment cores to reconstruct anthropogenic depositional fluxes of metal(loid)s of concern for the last ~210years. Results showed that Kejimkujik lake sediments are highly enriched in lead (Pb), antimony (Sb) and tin (Sn), with post-industrial metal(loid) concentrations being >4-fold greater than natural baseline levels (prior to ~1800) and moderately enriched in silver (Ag), bismuth (Bi), cadmium (Cd), copper (Cu), mercury (Hg), rubidium (Rb), tellurium (Te), thallium (Tl), vanadium (V), tungsten (W) and zinc (Zn), with post-industrial metal(loid) concentrations being between 1.5 and 4-fold greater than natural baseline levels (prior to ~1800). Lake sediment core reconstructions of total atmospheric Hg deposition matched well with Hg wet deposition monitoring data from the overlapped period (1997-2010) being 9.1±2.7μg/m2/yr and 7.0±0.7μg/m2/yr respectively. Lakes closest to historic gold mining sites show spikes in Ag, Cd, Sb, Tl, Zn and W during mining periods (~1880 and 1950). Most of the enriched metal(loid)s (EF >1.5) (Ag, Bi, Cu, Hg, Pb, Sb, Sn, V and W) do not appear affected by redox and remobilisation issues. For the other enriched metal(loid)s (EF >1.5) (Cd, Tl, and Zn), remobilisation from upper sediments appears to be occurring within these acidic and DOC rich Kejimkujik lakes.

Keywords

Kejimkujik,Long-range atmospheric pollution,Mining,Sediment,

OUR Recent Articles