MicroRNA-449b-5p suppresses the growth and invasion of breast cancer cells via inhibiting CREPT-mediated Wnt/β-catenin signaling.

Affiliation

Department of Ultrasound, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, China. Electronic address: [Email]

Abstract

Accumulating evidence has suggested that microRNA-449b-5p (miR-449b-5p) plays an important role in the development and progression of multiple cancers. However, little is known about the role of miR-449b-5p in breast cancer. In this study, we aimed to investigate the expression level, biological function and underlying mechanism of miR-449b-5p in breast cancer. Our results showed that miR-449b-5p expression was frequently down-regulated in breast cancer cell lines and tissues. The overexpression of miR-449b-5p significantly inhibited growth and invasion, and induced the cell cycle arrest of breast cancer cells. In contrast, the inhibition of miR-449b-5p showed the opposite effect. Interestingly, bioinformatic analysis predicted that cell cycle-related and expression-elevated protein in tumor (CREPT), an important oncogene in breast cancer, was a potential target gene of miR-449b-5p. The overexpression of miR-449b-5p decreased CREPT expression while miR-449b-5p inhibition promoted CREPT expression in breast cancer cells. Restoration of CREPT expression in miR-449b-5p mimics transfected cells partially reversed the suppressive effect of miR-449b-5p on breast cancer cell growth and invasion. Notably, our results showed that miR-449b-5p overexpression decreased the expression of β-catenin and suppressed the activation of Wnt/β-catenin/TCF-4 signaling via targeting CREPT. In addition, blocking Wnt/β-catenin partially reversed the promotion effect of miR-449b-5p inhibition on breast cancer cell growth and invasion. Overall, these results reveal a tumor suppressive role of miR-449b-5p that restricts the growth and invasion of breast cancer cells through targeting CREPT and inhibiting CREPT-mediated activation of Wnt/β-catenin signaling. Our study suggests that the miR-449b-5p/CREPT/Wnt/β-catenin axis may play an important role in the pathogenesis of breast cancer and miR-449-5p may serve as a potential therapeutic target for breast cancer.

Keywords

Breast cancer,CREPT,Wnt/β-catenin,miR-449–5p,

OUR Recent Articles