Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae-fabrication and characterization.

Affiliation

Department of Pathobiology, Faculty of Veterinary Medicine, Tabriz Branch, Islamic Azad University, Tabriz, East Azarbaijan, Iran. [Email]

Abstract

Selenium nanoparticles (Se NPs) were synthesized using Saccharomyces cerevisiae yeast. Influences of different amounts of sodium selenite (5.0, 10.0, 15.0, 20.0, and 25 µg) were evaluated on growth of yeast during incubation at 32 °C, during 4 days. UV-Vis spectroscopy results have shown that synthesized Se NPs had broad emission peak (λmax) in the wavelength around 350 nm which demonstrated that formation of Se NPs occurred in intracellular manner. Physico-chemical characteristics of the synthesized Se NPs using dynamic light scattering particle-size analyzer indicated that the fabricated Se NPs had particle size, polydispersity index, and zeta potential ranging from 75 to 709 nm, 0.189 to 0989, and -7.06 to -10.3 mV, respectively. Obtained results revealed that intracellular Se NPs with minimum particle size (75 nm), maximum zeta potential (-10.3 mV), and antioxidant activity (48.5%) were synthesized using minimum amount of selenium salt (5 µg). However, most uniform Se NPs were formed using maximum amount of selenium salt (25 µg). Results also indicated that by increasing amount of sodium selenite in the culture media, from 5.0 to 25 µg, antioxidant activity of the formed Se NPs decreased from 48.5 to 20.8, respectively.

Keywords

Antioxidant activity,Biosynthesis,Physico-chemical properties,Saccharomyces cerevisiae,Selenium nanoparticles,

OUR Recent Articles