Numerical study for tableting process in consideration of compression speed.

Affiliation

Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. Electronic address: [Email]

Abstract

A numerical study of the tableting process using a finite element method (FEM) is important to quantitatively understand the structural change inside the tablet and the mechanism of tableting failures such as capping, picking, lamination, and sticking. In the pharmaceutical field, the Drucker-Prager Cap (DPC) model is used most widely to demonstrate the mechanical behavior of the powder during tableting. The DPC model, however, cannot consider compaction speed, although the compaction speed has a large impact on the tablet strength and tableting failures. In the present study, a combined novel model using both the DPC and Perzyna models, which incorporates a visco-plastic behavior considering the compression speed, was proposed and numerical simulation was conducted. Cellulose, lactose, and acetaminophen were selected as model powders. The DPC-Perzyna model parameters were determined from experimental compaction tests, unconfined compression tests, and tension tests. The calculated loading curves agreed with the experimental data under different compaction speeds, in addition the high compression speed resulted in less plastic deformation and much residual stress. It was demonstrated that the DPC-Perzyna model proposed in the present study was useful to analyze the tableting process when considering compression speed.

Keywords

Compression speed,Drucker-Prager cap model,Finite element method,Perzyna model,Tableting process,

OUR Recent Articles