On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective.


Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, Petersgasse 12, A-8010 Graz, Austria. Electronic address: [Email]


The integration of enzymes with solid materials is important in many biotechnological applications, including the use of immobilized enzymes for biocatalytic synthesis. The development of functional enzyme-material composites is restrained by the lack of molecular-level insight into the behavior of enzymes in confined, surface-near environments. Here, we review recent advances in surface-sensitive spectroscopic techniques that push boundaries for the determination of enzyme structure and orientation at the solid-liquid interface. We discuss recent evidence from single-molecule studies showing that analyses sensitive to the temporal and spatial heterogeneities in immobilized enzymes can succeed in disentangling the effects of conformational stability and active-site accessibility on activity. Different immobilization methods involve distinct trade-off between these effects, thus emphasizing the need for a holistic (systems) view of immobilized enzymes for the rational development of practical biocatalysts.


Biocatalyst,Enzyme,Immobilization,Single-molecule analysis,Solid-liquid interface,

OUR Recent Articles