Optimal Selection of Incoming Materials from the Inventory for Achieving the Target Drug Release Profile of High Drug Load Sustained-Release Matrix Tablet.

Affiliation

Research Center of TCM Information Engineering, Beijing University of Chinese Medicine, Beijing, 100029, China. [Email]

Abstract

In the pharmaceutical process, raw material (including APIs and excipients) variability can be delivered to the final product, and lead to batch-to-batch and lot-to-lot variances in its quality, finally impacting the efficacy of the drug. In this paper, the Panax notoginseng saponins (PNS) sustained-release matrix tablet was taken as the model formulation. Hydroxypropyl methylcellulose with the viscosity of 4000 mPa·s (HPMCK4M) from different vendors and batches were collected and their physical properties were characterized by the SeDeM methodology. The in-vitro dissolution profiles of active pharmaceutical ingredients (APIs) from matrix tablets made up of different batches HPMC K4M displayed significant variations. Multi-block partial least squares (MB-PLS) modeling results further demonstrated that physical properties of excipients played dominant roles in the drug release. In order to achieve the target drug release profile with respect to those far from the criteria, the optimal selection method of incoming materials from the available was established and validated. This study provided novel insights into the control of the input variability of the process and amplified the application of the SeDeM expert system, emphasizing the importance of the physical information of the raw materials in the drug manufacturing process.

Keywords

SeDeM,excipient variability,formulation optimization,latent variable modeling,sustained-release matrix tablet,