Oxidation of sulfonamides by ferrate(VI): Reaction kinetics, transformation byproducts and toxicity assesment.

Affiliation

Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071, Granada, Spain. Electronic address: [Email]

Abstract

This study was aimed at the degradation of sulfonamides (SNs) via oxidation with Fe(VI). The reaction kinetics, identification of degradation byproducts and their toxicity were investigated. The pH solution and Fe(VI) loading had significant effects on the degradation of the sulfonamides. The maximum degradation rate occurred at pH 3.0 with a 6:1 ratio Fe(VI): sulfonamide, obtaining 100% degradation of 15 mg L-1 SN within 5 min. Although Fe(VI) also showed an appreciable reactivity towards SNs (kapp = 9.85-19.63 × 102 M-1 s-1) at pH 7. The influence of solution pH on the values of kapp can be explained considering the specific reaction between Fe(VI) and SNs. Degradation rates are also influenced by the presence of inorganic ions in different water matrixes. For this reason, ions present in groundwater enhanced the SNs degradation through a synergistic effect among carbonates, sulfates and Fe(VI). Degradation byproducts identified, through UPLC analysis, allowed us to proposed three degradation pathways depending on pH. At acid pH there is a cleavage of C-S and S-N bonds. At neutral pH nitroso and nitro-derivates are formed. At basic pH hydroxylation is the main reaction. The cytotoxicity assay of HEK-293 and J774 cell lines exposed to Fe(VI) indicated that transformation byproducts had a lower toxicity than SNs as baseline products. Accordingly, this research suggests that Fe(VI) can act as a chemical oxidant to remove SNs antibiotics and it can be used to treat antibiotic pollution in wastewater.

Keywords

Cytotoxicity,Degradation pathway,Fe(VI),Oxidation,Sulfonamides,

OUR Recent Articles