PACAP induces FSHβ gene expression via EPAC.

Affiliation

Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, 92521, USA. Electronic address: [Email]

Abstract

Gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are heterodimers of a common α subunit and unique β subunits. Regulation of their levels, primarily by GnRH, is critical for reproductive function. Several other hormones modulate gonadotropin expression, either independently or by modifying the responsiveness to GnRH. Pituitary adenylate cyclase activating peptide (PACAP) is one such hormone. Four-hour treatment of female mouse primary pituitary cells by either GnRH or PACAP induced FSHβ expression, while 24-h treatment repressed FSHβ. Both PACAP and GnRH caused FSH secretion into the medium. In the gonadotropes, PACAP activates primarily Gαs and increases concentration of cAMP, while GnRH primarily functions via Gαq and increases calcium concentration. Herein, we compared PACAP and GnRH signaling pathways that lead to the induction of FSHβ expression. Interestingly, constitutively active Gαs represses LHβ and induces FSHβ expression, while Gαq induces both β-subunits. We determined that FSHβ induction by PACAP requires functional EPAC, a cAMP sensor protein that serves as a guanine exchange factors for small G proteins that then bridges cAMP signaling to MAPK pathway. We further demonstrate that in addition to the prototypical small G protein Ras, two members of the Rho subfamily, Rac and CDC42 are also necessary for PACAP induction of FSHβ, likely via activation of p38 MAPK that leads to induction of cFOS, a critical transcription factor that is necessary and sufficient for FSHβ induction. Therefore, PACAP-induced cAMP pathway leads to MAPK activation that stimulates cFOS induction, to induce the expression of FSHβ subunit and increase FSH concentration.

OUR Recent Articles