Perforin and Granzyme B Expressed by Murine Myeloid-Derived Suppressor Cells: A Study on Their Role in Outgrowth of Cancer Cells.


Laboratory of Translational Radiation Oncology Physics and Supportive Care, Department of Radiotherapy, UZ Brussel, Vrije Universteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium. [Email]


A wide-range of myeloid-derived suppressor cell (MDSC)-mediated immune suppressive functions has previously been described. Nevertheless, potential novel mechanisms by which MDSCs aid tumor progression are, in all likelihood, still unrecognized. Next to its well-known expression in natural killer cells and cytotoxic T lymphocytes (CTLs), granzyme B (GzmB) expression has been found in different cell types. In an MDSC culture model, we demonstrated perforin and GzmB expression. Furthermore, similar observations were made in MDSCs isolated from tumor-bearing mice. Even in MDSCs from humans, GzmB expression was demonstrated. Of note, B16F10 melanoma cells co-cultured with perforin/GzmB knock out mice (KO) MDSCs displayed a remarkable decrease in invasive potential. B16F10 melanoma cells co-injected with KO MDSCs, displayed a significant slower growth curve compared to tumor cells co-injected with wild type (WT) MDSCs. In vivo absence of perforin/GzmB in MDSCs resulted in a higher number of CD8+ T-cells. Despite this change in favor of CD8+ T-cell infiltration, we observed low interferon-γ (IFN-γ) and high programmed death-ligand 1 (PD-L1) expression, suggesting that other immunosuppressive mechanisms render these CD8+ T-cells dysfunctional. Taken together, our results suggest that GzmB expression in MDSCs is another means to promote tumor growth and warrants further investigation to unravel the exact underlying mechanism.


CD8+ T-cell,MDSC,cancer,granzyme B,perforin,