Phosphorus fractions and oxygen isotope composition of inorganic phosphate in typical agricultural soils.


State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address: [Email]


Phosphorus (P), despite being an essential nutrient element for plants growth in agricultural ecosystem, the low utilization rate of soil P and the environmental problems caused by soil P losses are serious. Therefore, scoping knowledge of the possible sources and utilization extent of soil P by microorganisms is very helpful for better understanding of promoting P utilization for sustainable agriculture. Oxygen isotope of phosphate technology is an effective tool to trace the sources of P. In this study, P contents and oxygen isotope composition of inorganic phosphate (δ18OP) of different pools (H2O-P, NaHCO3-P, NaOH-P, and HCl-P) in typical agricultural soil from Northeast China and Central China were analyzed and quantified. The results showed that fertilizer and land use were important factors influencing the contents of H2O-Pt and NaHCO3-Pt and the soil TP contents from different types of soils were greatly affected by soil weathering degree. The δ18OP of different P pools indicated that the difference in utilization extent of different P fractions by microorganisms and the δ18OP values of different P fractions could be due to accumulation of multiple factors. The results will provide effective information for further study on sources and effective utilization of different P fractions in soil.


Agricultural soil,Different P fractions,Inorganic phosphate,Oxygen isotope,

OUR Recent Articles